電液動執(zhí)行器性能比較 上海申弘閥門有限公司 0 電液動執(zhí)行器性能比較引言 之前介紹蒸汽截止閥熱損失,現在介紹執(zhí)行器作為一種動力裝置,綜合了氣動、液壓、控制、機電、計算機、通信等技術,可以快速、穩(wěn)定地對被控對象的位置進行控制,不僅應用于各種閥門的驅動、控制中,而且現已廣泛應用在電力、水利、冶金、造紙、航天、管線、石化、工業(yè)裝備、食品加工等領域眾多需要動力驅動的部位[1,2]。按所用驅動能源形式劃分,執(zhí)行器可分為氣動執(zhí)行器、電動執(zhí)行器和電液執(zhí)行器。 電液執(zhí)行器將控制模塊和液壓動力模塊集成一體,分為直行程、角行程兩種。控制模塊發(fā)出指令到智能可控電動機或伺服閥,控制液壓動力模塊以線性位移(或角位移)輸出力(或力矩),驅動被控對象,并通過位移反饋完成調節(jié)過程,實現各種功能控制。 目前市場上使用zui多的電液執(zhí)行器一般可分為兩種:一種是伺服閥控制式電液執(zhí)行器,即傳統的電液伺服執(zhí)行器,通常采用開式循環(huán)液壓系統,通過控制伺服閥調節(jié)液壓油流動方向及流量大小,實現對被控對象的調節(jié),如德國的Reineke電液執(zhí)行器;另一種是電動機控制式電液執(zhí)行器,采用閉式循環(huán)液壓系統,通過調節(jié)步進電動機或伺服電動機的轉向和轉速來控制雙向泵壓力油輸出方向和流量,對被控對象進行調控,如韓國RPM、美國REXA等電液執(zhí)行器。 1 電液執(zhí)行器與氣動及電動執(zhí)行器的比較 氣動執(zhí)行器的執(zhí)行機構和調節(jié)機構是統一的整體,其執(zhí)行機構有薄膜式、活塞式、撥叉式和齒輪齒條式。采用氣體做動力介質,zui大的優(yōu)點是安全性高,對使用環(huán)境要求低,可應用于易燃易爆的工作場合。但由于氣體的可壓縮性,剛度相對較低的氣動執(zhí)行器響應較慢,分辨率欠佳,控制精度低,抗偏差能力較差,應用在動態(tài)力或摩擦較大情況下時,極易引起設備的不良振動。且其能-重比差,功率密度低,較大驅動力的氣動執(zhí)行器極其復雜、笨重而昂貴。雖然在高精度控制方面不足,但由于氣動執(zhí)行器安全,易于操作、維護,初始投資省,有較高性價比,在化工、航天等領域應用廣泛。 電動執(zhí)行器又稱電動執(zhí)行機構,使用單相或三相電動機驅動齒輪或蝸輪蝸桿輸出直線或旋轉運動。電動執(zhí)行器可輸出相對恒定的驅動力,高度穩(wěn)定,抗偏差能力強,控制精度要比氣動執(zhí)行器高,不用借助其他輔助系統可自動保位,但其結構復雜,易發(fā)生故障,維護費用高,調節(jié)過于頻繁會引起電動機發(fā)熱,減速齒輪易磨損。此外,電動執(zhí)行器運行緩慢,難于實現大驅動力,且存在過載保護實現困難、不良位置等問題[3]。電動執(zhí)行器開/關操作,主要應用于動力廠或核動力廠。 電液執(zhí)行器集成了電動操作的簡易性、液壓的動力快速、固態(tài)電子的可靠性和用戶配置的靈活性,具有響應速度快、控制精度高、輸出功率大、結構緊湊等優(yōu)點。電液執(zhí)行器克服了氣動執(zhí)行器的控制精度低、電動執(zhí)行器的可控性差等問題,在一定的應用場合和工作環(huán)境下,具有*的優(yōu)勢,因而廣泛應用在電廠、石化等比較特殊的場合。表1對三種執(zhí)行器在驅動力、控制精度等方面進行了比較。 表1 氣動、電動、電液執(zhí)行器的比較 2 電液動執(zhí)行器性能比較電液執(zhí)行器結構及原理 2.1 傳統電液伺服執(zhí)行器 上海申弘閥門有限公司主營閥門有:截止閥,電動截止閥 傳統電液伺服執(zhí)行器將油源站與電液伺服系統集成為一體[4],所有部件如電動機-泵單元、伺服或比列控制閥、液壓缸、位置反饋組件、壓力表、液位和溫度報警傳感器、過濾器、溢流閥、單向閥等都安裝在容器內部。電動機通常為鼠籠式異步電動機,性能穩(wěn)定,可滿足電液伺服執(zhí)行器各工況要求,且價格較低。伺服閥為電液伺服執(zhí)行器的控制核心,既是電液轉換元件,又是功率放大元件,其功用是將小功率的電信號輸入轉換為大功率液壓能(壓力和流量)輸出,能夠對輸出流量和壓力進行連續(xù)雙向控制,從而實現對執(zhí)行器位移、速度、加速度和力的控制,動態(tài)響應速度快,控制精度高,結構緊湊,廣泛用于快速高精度的各類機械設備的液壓閉環(huán)控制中[5]。 依據伺服閥壓力油源供給方式的不同,電液伺服執(zhí)行器通常又有兩種:一種是采用雙泵供油,電動機不停的工作,伺服閥始終有壓力油供給,以此來保證系統調節(jié)的快速性,如Reineke電液執(zhí)行器,其液壓原理如圖1所示。另一種采用單泵-蓄能器組合作為伺服閥壓力油源,其簡化液壓原理如圖2所示。
圖1所示雙泵供油電液伺服執(zhí)行器依靠電動機2驅動雙聯泵3經過過濾器8和伺服閥10將液壓油送入動力液壓缸14中。泵3.2供油到伺服閥,當有小的控制偏差時也供油到動力液壓缸。當控制偏差小時,泵3.1由液控換向閥5和溢流閥6控制轉換到循環(huán)狀態(tài),實現其卸荷。在要求大容量動作的情況下,泵3.1也供油到動力液壓缸。這樣的組合,一方面可確保在大的控制偏差下有足夠的油量使活塞以所需要的速度運行;另一方面,保證僅提供所需要的油量來滿足要求,避免無功損耗和過多的發(fā)熱;zui重要的是執(zhí)行器工作時伺服閥始終有壓力油源,可保證其調節(jié)控制響應速度。 測壓點7處接壓力表可檢測液壓泵的輸出油壓,單向閥4實現雙泵合流,雙向液壓鎖11可實現動力液壓缸保位,雙單向節(jié)流閥12為回油節(jié)流調速。雙向液壓鎖、雙單向節(jié)流閥可根據使用情況來決定是否應用。單泵-蓄能器供油電液伺服執(zhí)行器依據泵和蓄能器規(guī)格、伺服閥油源、工作方式的不同又可分為兩種:一種是采用定量泵-溢流閥作定壓油源;另一種是采用定量泵-蓄能器-卸荷閥作油源。 定量泵-溢流閥式執(zhí)行器(無壓力繼電器)工作時電動機2不停地運轉,通過定壓溢流閥5的溢流使供油壓力恒定,結構簡單,反應迅速,壓力變動小。液壓源的流量按系統控制流量確定,系統效率低,發(fā)熱和溫升大。利用蓄能器可減小泵的規(guī)格,降低系統壓力波動和負載流量變化對油源壓力的影響[6]。一般適用于中低壓電液伺服執(zhí)行器。 定量泵-蓄能器-卸荷閥式執(zhí)行器工作時,當蓄能器內的油壓達到壓力繼電器8.1設計上*,電動機2停止運轉,靠蓄能器12儲存的高壓油來維持執(zhí)行器的工作,一旦蓄能器內的油壓降到8.1下限,電動機自動啟動,向蓄能器補充高壓油,如文獻[4]中所介紹的自容式電液執(zhí)行器。過于頻繁啟動會降低電動機和泵的壽命,根據使用情況,供油壓力變動范圍也可由壓力繼電器8.2通過卸荷溢流閥5和電磁閥6控制,泵卸荷時,由蓄能器保壓供油。該系統供油壓力在一定范圍內波動,一般的電液伺服執(zhí)行器均可適用。可根據使用情況選用或棄用一些液壓元件,比如圖2中雙單向節(jié)流閥。 上邊所述電液伺服執(zhí)行器均為閉環(huán)控制系統,圖3為其控制方框圖。 圖3 電液伺服執(zhí)行器控制方框圖 目標位置指令信號和位移傳感器反饋信號比較后產生的偏差信號經伺服放大器放大后輸出一個與偏差信號成一定函數關系的控制電流驅動伺服閥,調節(jié)液壓油流動方向及流量大小,控制液壓缸按方向運動,實現對被控對象的調節(jié),直到指令信號和反饋信號偏差為零或在容許范圍之內,調節(jié)過程才會停止。 2.2 電動機控制式電液執(zhí)行器 市場上電動機控制式電液執(zhí)行器無論是液壓系統、控制方式還是工作過程都大同小異,均采用步進電動機或伺服電動機、高精度雙向齒輪泵、液壓缸、油箱、反饋組件等。所有組件均與外部獨立、封閉,高度集成,模塊化、小型化設計[2,7]。 電動機控制式電液執(zhí)行器簡化液壓原理如圖4所示,為閉式循環(huán)液壓系統,采用等量泵入/吐出原理進行工作,效率較高[8]。當執(zhí)行器得到液壓缸活塞向上移動的指令信號時,伺服電動機或步進電動機2驅動液壓泵3旋轉,泵B口輸出的壓力油經液控單向閥進入雙作用液壓缸8下腔,推動活塞上移,同時,液壓缸上腔回油直接作用在液壓泵的吸入口A上,回油背壓變?yōu)橥苿右簤罕眯D的動力,可減少電動機的功率消耗[9];當得到相反的指令信號時,電動機驅動液壓泵反向旋轉,壓力油推動活塞下移;當活塞移動到預定位置時,電動機及液壓泵停轉,雙向液壓鎖6確保動力液壓缸原位鎖定。電液執(zhí)行器油壓超過溢流閥7設定壓力時,溢流閥開啟溢流,實現過載保護。由于泄漏、溢流等因素引起循環(huán)液壓油不足時,系統會產生一定真空,油箱的液壓油經過濾器4、單向閥5等被吸入液壓泵低壓吸油口,補充系統液壓油損失,防止氣穴等現象的發(fā)生。 圖4 電動機控制式電液執(zhí)行器液壓原理 與電液伺服執(zhí)行器不同,目標指令信號與位置反饋信號比較放大后控制的是伺服電動機或步進電動機,圖5為其控制方框圖,通過控制電動機轉向和轉速來調節(jié)雙向定量泵的轉向和流量輸出。 圖5 電動機控制式電液執(zhí)行器控制方框圖 根據設置時確定的行程和信號范圍,位置控制處理器把外部送入的指令信號轉化為目標位置,執(zhí)行器的當前位置通過裝在執(zhí)行器上的位移傳感器測定。目標位置和當前位置的差值為控制偏差,如果偏差超出了用戶設定的死區(qū),執(zhí)行器將啟動電動機,驅動液壓泵旋轉,調節(jié)執(zhí)行器輸出到預定位置,運動到位后電動機及泵停轉[1]。 3 電液執(zhí)行器的應用分析 高精度的電液伺服執(zhí)行器輸出推力大,全行程時間短,響應快,控制精度高,無超調,運行非常平穩(wěn),適合于高壓差、高黏度介質等嚴酷工況條件。但其往往需要配套使用一個液壓站或者帶一套伺服控制系統,體積龐大,對液壓油清潔度要求高,往往存在泄漏等問題,而且生產成本、使用成本(能耗和維護費用)高。因而僅在少數需要大驅動力或高精度連續(xù)調節(jié)控制的時候才使用。 和傳統電液伺服執(zhí)行器相比,電動機控制式電液執(zhí)行器,體積小、重量輕,安裝、使用方便,生產、使用成本低,只在需要調節(jié)時電動機和泵才會啟動。性能*,能達到電液伺服執(zhí)行器大多數指標。雖然電動機控制式電液執(zhí)行器有諸多優(yōu)點,但在大功率、大行程、大慣量、復雜的特性補償方面無法實現,而傳統的電液伺服執(zhí)行器則有明顯的優(yōu)勢[1]。 4 結論 在不同的應用環(huán)境下,氣動、電動、電液執(zhí)行器各有自己的優(yōu)勢,本文總結了三種執(zhí)行器的優(yōu)缺點,并以伺服閥控制式和電動機控制式兩種類型電液執(zhí)行器為例,從液壓原理、控制方式、結構、性能、應用等方面作了詳細的比較分析,對執(zhí)行器的設計和使用有一定的實用價值。與本文相關的產品有角式平衡型截止閥設計說明
|