一體式鍛造截止閥工藝高壓電站截止閥與其他截止閥產品相比的特點是高溫高壓,*的自密封設計,壓力越高,密封越可靠。由于性能技術特性、工況的特殊使產品也形成了其他產品所替代不了的特點。制造驗收技術條件按日本火力發電用閥門標準E101的規定。磅級電站截止閥的結構長度按E101的規定。閥體焊接坡口按ANSI B16.25的規定或按用戶提供的尺寸。閥蓋填料函嘗試合理,填料加緩蝕劑,密封可靠,開關平穩。閥門具有上密封結構,保證閥門開啟運行時閥桿處不會外漏。鑄造和鍛造是兩個不同的加工工藝。鑄造是把沒有形狀的金屬液變成有形狀的固體。鑄造閥門就是澆鑄所成的閥門,一般鑄造的閥門壓力等級都比較低(如 PN16、PN25、PN40,但也有高壓的,可以到 1500Lb、2500Lb),口徑大多數都為 DN50 以上。 而鍛造主要是在高溫下用擠壓的方法成型。可以細化制件中的晶粒。鍛造閥門就是鍛打出來的,一般都是用在等級高的管路上,口徑比較小,一般都在 DN50 以下。今天,小編為大家整理了在閥門鍛造工藝中的一些基礎知識,共大家學習與參考。目前管線末端所使用的閥門,大部分采用小口徑截止閥,這些閥門用量大、開啟頻繁,加上介質的沖蝕和雜質的影響,在使用一段時間后,會產生密封面的損傷,致使閥門無法正常使用。這時就需要更換或維修閥門,但維修閥門不僅浪費時間,還需要大量的人力、物力,特別是在不能動用明火的場合,更換焊接端的閥門就會更加困難,嚴重的會影響整條管線無法正常運行。 一、一體式鍛造截止閥工藝鍛造的種類 (一) 根據變形溫度分類 當溫度超過300-400℃(鋼的藍脆區),達到700-800℃時,變形阻力將急劇減小,變形能也得到很大改善。根據在不同的溫度區域進行的鍛造,針對鍛件質量和鍛造工藝要求的不同,可分為冷鍛、溫鍛、熱鍛三個成型溫度區域。鋼的開始再結晶溫度約為727℃,但普遍采用800℃作為劃分線,高于800℃的是熱鍛;在300~800℃之間稱為溫鍛或半熱鍛。不加熱在室溫下的鍛造叫冷鍛。 在低溫鍛造時,鍛件的尺寸變化很小。在700℃以下鍛造,氧化皮形成少,而且表面無脫碳現象。因此,只要變形能在成形能范圍內,冷鍛容易得到很好的尺寸精度和表面光潔度。只要控制好溫度和潤滑冷卻,700℃以下的溫鍛也可以獲得很好的精度。熱鍛時,由于變形能和變形阻力都很小,可以鍛造形狀復雜的大鍛件。要得到高尺寸精度的鍛件,可在900-1000℃溫度域內用熱鍛加工。另外,要注意改善熱鍛的工作環境。鍛模壽命(熱鍛2-5千個,溫鍛1-2萬個,冷鍛2-5萬個)與其它溫度域的鍛造相比是較短的,但它的自由度大,成本低。坯料在冷鍛時要產生變形和加工硬化,使鍛模承受高的荷載,因此,需要使用高強度的鍛模和采用防止磨損和粘結的硬質潤滑膜處理方法。另外,為防止坯料裂紋,需要時進行中間退火以保證需要的變形能力。為保持良好的潤滑狀態,可對坯料進行磷化處理。在用棒料和盤條進行連續加工時,目前對斷面還不能作潤滑處理,正在研究使用磷化潤滑方法的可能。 (二) 根據坯料的移動方式分類根據坯料的移動方式,鍛造可分為自由鍛、鐓粗、擠壓、模鍛、閉式模鍛、閉式鐓鍛。
1、自由鍛 定義:利用沖擊力或壓力使金屬在上下砧面間各個方向自由變形,不受任何限制而獲得所需形狀及尺寸和一定機械性能的鍛件的一種加工方法,簡稱自由鍛。 基本工序: 自由鍛造的缺陷: 裂紋:可能由坯料質量不好、加熱不充分、鍛造溫度過低、鍛件冷卻不當和鍛造方法有誤造成的。 末端凹陷和軸心裂紋 可能由于鍛造時坯料內部未熱或坯料整個截面未鍛透,變形只產生在坯料表面造成的。 折疊: 可能由于坯料在鍛壓時送進量小于單面壓下量而造成的。 2、模鍛 定義:模鍛是指在模鍛設備上利用模具使毛坯成型而獲得鍛件的鍛造方法。此方法生產的鍛件尺寸,加工余量較小,結構也比較復雜生產率高。 特點:在模鍛錘或壓力機上用鍛模將金屬坯料鍛壓加工成形的工藝。模鍛工藝生產效率高,勞動強度低,尺寸,加工余量小,并可鍛制形狀復雜的鍛件;適用于批量生產。但模具成本高,需有的模鍛設備,不適合于單件或小批量生產。 分類:根據設備不同,模鍛分為錘上模鍛,曲柄壓力機模鍛,平鍛機模鍛,摩擦壓力機模鍛等。錘上模鍛所用的設備為模鍛錘,通常為空氣模鍛錘,對形狀復雜的鍛件,先在制坯模腔內初步成形,然后在鍛模腔內鍛造。按鍛模結構分類:鍛模上有容納多余金屬的毛邊槽的,稱為開式模鍛;反之,鍛模上沒有容納多余金屬的毛邊飛槽的,稱為閉式模鍛。由原始坯料直接成型的,稱為單模膛模鍛。對形狀復雜的鍛件,在同一鍛模上需要經過若干工步的預成型的,稱為多模膛模鍛。 精密模鍛是在模鍛基礎上發展而來,能夠鍛造一些復雜形狀,尺寸精度高的零件,如:錐齒輪,葉片,航空零件等。 制備:模鍛用的鍛模,由上下兩個模塊組成,模膛4是鍛模的工作部分,上下模各一半。用燕尾和楔1、2固定在錘砧和工作臺上;并以鎖扣3或導柱導向,防止上下模塊錯位。金屬坯料按模膛的形狀變形。 工序、工藝過程:模鍛的工序為制坯、預鍛和終鍛。終鍛模的模膛是按鍛件的尺寸、形狀,并加上余量和偏差確定的。模鍛一般分開口模鍛和閉口模鍛兩種:開口模鍛的模膛周圍有毛邊槽5,成形后多余的金屬流入槽內,后將毛邊切除;閉口模鍛只在端部有很小的毛邊,如果坯料,也可以不出毛邊。模鍛的工藝過程為下料、加熱、預鍛、終鍛、沖連皮、切邊、調質、噴丸。常用工藝有鐓粗、拔長,折彎、沖孔、成型。 (三)一體式鍛造截止閥工藝根據鍛模的運動方式分類 根據鍛模的運動方式,鍛造又可分為擺輾、擺旋鍛、輥鍛、楔橫軋、輾環和斜軋等方式。擺輾、擺旋鍛和輾環也可用精鍛加工。為了提高材料的利用率,輥鍛和橫軋可用作細長材料的前道工序加工。與自由鍛一樣的旋轉鍛造也是局部成形的,它的優點是與鍛件尺寸相比,鍛造力較小情況下也可實現形成。包括自由鍛在內的這種鍛造方式,加工時材料從模具面附近向自由表面擴展,因此,很難保證精度,所以,將鍛模的運動方向和旋鍛工序用計算機控制,就可用較低的鍛造力獲得形狀復雜、精度高的產品,例如生產品種多、尺寸大的汽輪機葉片等鍛件。鍛造設備的模具運動與自由度是不一致的,根據下死點變形限制特點,鍛造設備可分為下述四種形式: (1)限制鍛造力形式:油壓直接驅動滑塊的油壓機;
(2)準沖程限制方式:油壓驅動曲柄連桿機構的油壓機; (3)沖程限制方式:曲柄、連桿和楔機構驅動滑塊的機械式壓力機; (4)能量限制方式:利用螺旋機構的螺旋和磨擦壓力機。 為了獲得高的精度應注意防止下死點處過載,控制速度和模具位置。因為這些都會對鍛件公差、形狀精度和鍛模壽命有影響。另外,為了保持精度,還應注意調整滑塊導軌間隙、保證剛度,調整下死點和利用補助傳動裝置等措施。此外,根據滑塊運動方式還有滑塊垂直和水平運動(用于細長件的鍛造、潤滑冷卻和高速生產的零件鍛造)方式之分,利用補償裝置可以增加其它方向的運動。上述方式不同,所需的鍛造力、工序、材料的利用率、產量、尺寸公差和潤滑冷卻方式都不一樣,這些因素也是影響自動化水平的因素。 二、一體式鍛造截止閥工藝鍛造的重要性 鍛造生產是機械制造工業中提供機械零件毛坯的主要加工方法之一。通過鍛造,不僅可以得到機械零件的形狀,而且能改善金屬內部組織,提高金屬的機械性能和物理性能。一般對受力大、要求高的重要機械零件,大多采用鍛造生產方法制造。如汽輪發電機軸、轉子、葉輪、葉片、護環、大型水壓機立柱、高壓缸、軋鋼機軋輥、內燃機曲軸、連桿、齒輪、軸承、以及國防工業方面的火炮等重要零件,均采用鍛造生產。 因此,鍛造生產廣泛的應用于冶金、礦山、汽車、拖拉機、收獲機械、石油、化工、航空、航天、兵器等工業部門,就是在日常生活中,鍛造生產亦具有重要位置。從某種意義上說,鍛件的年產量,模鍛件在鍛件總產量中所占的比例,以及鍛造設備大小和擁有量等指標,在一定程度上反映了一個國家的工業水平。 三、一體式鍛造截止閥工藝鍛造用材 鍛造用料主要是各種成分的碳素鋼和合金鋼,其次是鋁、鎂、銅、鈦等及其合金。材料的原始狀態有棒料、鑄錠、金屬粉末和液態金屬。金屬在變形前的橫斷面積與變形后的橫斷面積之比稱為鍛造比。正確地選擇鍛造比、合理的加熱溫度及保溫時間、合理的始鍛溫度和終鍛溫度、合理的變形量及變形速度對提高產品質量、降低成本有很大關系。一般的中小型鍛件都用圓形或方形棒料作為坯料。棒料的晶粒組織和機械性能均勻、良好,形狀和尺寸準確,表面質量好,便于組織批量生產。只要合理控制加熱溫度和變形條件,不需要大的鍛造變形就能鍛出性能優良的鍛件。鑄錠僅用于大型鍛件。鑄錠是鑄態組織,有較大的柱狀晶和疏松的中心。因此必須通過大的塑性變形,將柱狀晶破碎為細晶粒,將疏松壓實,才能獲得優良的金屬組織和機械性能。經壓制和燒結成的粉末冶金預制坯,在熱態下經無飛邊模鍛可制成粉末鍛件。鍛件粉末接近于一般模鍛件的密度,具有良好的機械性能,并且精度高,可減少后續的切削加工。粉末鍛件內部組織均勻,沒有偏析,可用于制造小型齒輪等工件。但粉末的價格遠高于一般棒材的價格,在生產中的應用受到一定限制。對澆注在模膛的液態金屬施加靜壓力,使其在壓力作用下凝固、結晶、流動、塑性變形和成形,就可獲得所需形狀和性能的模鍛件。液態金屬模鍛是介于壓鑄和模鍛間的成形方法,特別適用于一般模鍛難于成形的復雜薄壁件。鍛造用料除了通常的材料,如各種成分的碳素鋼和合金鋼,其次是鋁、鎂、銅、鈦等及其合金之外,鐵基高溫合金,鎳基高溫合金,鈷基高溫合金的變形合金也采用鍛造或軋制方式完成,只是這些合金由于其塑性區相對較窄,所以鍛造難度會相對較大,不同材料的加熱溫度,開鍛溫度與終鍛溫度都有嚴格的要求。 四、一體式鍛造截止閥工藝鍛造工藝流程不同的鍛造方法有不同的流程,其中以熱模鍛的工藝流程長,一般順序為:鍛坯下料;鍛坯加熱;輥鍛備坯;模鍛成形;切邊;沖孔;矯正;中間檢驗,檢驗鍛件的尺寸和表面缺陷;鍛件熱處理,用以消除鍛造應力,改善金屬切削性能;清理,主要是去除表面氧化皮;矯正;檢查,一般鍛件要經過外觀和硬度檢查,重要鍛件還要經過化學成分分析、機械性能、殘余應力等檢驗和無損探傷。
J61Y(J961Y)高壓電站截止閥主要特點及用途 閥門與管路連接采用焊接式結構。 密封面有易磨損、擦傷、密封性能好,使用壽命長。 結構緊湊,啟閉性好、高度小、維護方便。 適用于水、蒸汽、油品管路上,具有耐高壓的特點;合金鋼閥門具有耐高溫,耐高壓的特點。 高溫高壓截止閥是啟閉件(閥瓣)沿閥體密封面軸線升降運動的閥門,閥桿開啟與關閉行程相對較短,而且具有非常用可靠的開通和切斷功能.不能作調節閥用。 五、一體式鍛造截止閥工藝鍛件特點 與鑄件相比,金屬經過鍛造加工后能改善其組織結構和力學性能。鑄造組織經過鍛造方法熱加工變形后由于金屬的變形和再結晶,使原來的粗大枝晶和柱狀晶粒變為晶粒較細、大小均勻的等軸再結晶組織,使鋼錠內原有的偏析、疏松、氣孔、夾渣等壓實和焊合,其組織變得更加緊密,提高了金屬的塑性和力學性能。鑄件的力學性能低于同材質的鍛件力學性能。此外,鍛造加工能保證金屬纖維組織的連續性,使鍛件的纖維組織與鍛件外形保持一致,金屬流線完整,可保證零件具有良好的力學性能與長的使用壽命采用精密模鍛、冷擠壓、溫擠壓等工藝生產的鍛件,都是鑄件所*的鍛件是金屬被施加壓力,通過塑性變形塑造要求的形狀或合適的壓縮力的物件。這種力量典型的通過使用鐵錘或壓力來實現。鑄件過程建造了精致的顆粒結構,并改進了金屬的物理屬性。在零部件的現實使用中,一個正確的設計能使顆粒流在主壓力的方向。鑄件是用各種鑄造方法獲得的金屬成型物件,即把冶煉好的液態金屬,用澆注、壓射、吸入或其它澆鑄方法注入預先準備好的鑄型中,冷卻后經落砂、清理和后處理等,所得到的具有一定形狀,尺寸和性能的物件。 六、一體式鍛造截止閥工藝鍛造過程注意事項 (1)鍛造加工過程包括:將材料切割成所需尺寸、加熱、鍛造、熱處理、清理和檢驗。在小型人工鍛造中,所有這些操作都由數名鍛工上手和下手在狹小場所內進行。他們都暴露于相同的有害環境和職業性危害中;在大型鍛造車間,危害隨工作崗位的不同而各異。工作條件盡管工作條件因鍛造形式不同而各異,但具有某些共同特點:中等強度的體力勞動,干熱的小氣候環境,產生噪聲和振動,空氣受煙霧污染。 (2)工人們同時暴露于高溫空氣和熱輻射下,導致熱量在體內積累,熱量加上代謝的熱量,會造成散熱失調和病理變化。 七、一體式鍛造截止閥工藝鍛造生產危險因素及主要原因 在鍛造生產中,易發生的外傷事故,按其原因可分為三種:機械傷——工具或工件直接造成的刮傷、碰傷;燙傷;電觸傷。
現代鍛造業在歐美等發達國家已有上百年的歷史,*鍛造工藝和鍛造技術一直由德國、美國、日本和俄羅斯等國壟斷。我國鍛造業起步較發達國家晚,許多關鍵自由鍛件產品大多依賴進口,但隨著經濟發展水平的提高,與國外交流機會的增多, 鍛制法蘭行業發展概況 法蘭(Flange)又叫法蘭盤或突緣,主要應用于管狀部件的連接。法蘭在機械零部件應用中非常普遍,廣泛應用于石化管道,金屬壓力容器,建筑物的上、下水管道,市政供水管道,船舶,電力等行業。 根據所使用的原材料不同,法蘭又可以劃分為碳鋼法蘭、不銹鋼法蘭和合金鋼法蘭;根據制造工藝的不同,法蘭又可以劃分為鍛制法蘭和鑄造法蘭。鍛制法蘭主要是通過自由鍛或模鍛工藝加工生產;鑄造法蘭是通過澆鑄工藝制造法蘭。 目前,我國鍛制法蘭行業在裝備水平、鍛造技術和加工工藝上均取得了長足進步,產品的質量和性能已有大幅提升。由于人力成本較低,使得我國生產的鍛制法蘭在上具有較強的競爭優勢,近年來出口數量達到了較高水平。德國、日本等工業發達國家由于人力成本較高,其國內法蘭生產廠家已經很少,所需法蘭產品主要從中國、印度、巴西等發展中國家進口。 熱處理技術:重點在于提高產品質量、提高熱處理效率以及節約能源、保護環境等。如采用計算機控制加熱爐和熱處理爐的加熱過程,控制燒嘴實現自動調節燃燒、調節爐溫、自動點火及加熱參數管理;余熱利用、熱處理爐配備再生燃燒室等;并在此基礎上實現了產業化生產。在引進 國外新的生產技術和關鍵設備的基礎上,中國已能自己設計和制造高速重載齒輪鍛件的生產裝備,這些裝備已接近,技術和裝備水平的提升有力的促進了國內鍛造行業的發展。 |