1、低溫深冷不銹鋼截止閥優化改進方案概述
低溫截止閥是一種工作在低溫氣氫或液氫介質中,用來接通或切斷管路介質的裝置。本文介紹一種用于氫氧發動機試驗臺上的低溫截止閥,針對在使用過程中出現閥門無法動作的問題,進行了故障分析,通過改進結構,使閥門正常運行于試驗系統中。低溫截止閥用于低溫液體貯運設備的管理系統,具有開關靈活、密封可靠的特點,也可用于其他低溫和深冷介質的管理系統。 低溫截止閥可分為長軸和短軸。適用于低溫液體貯運設備的管理系統,具有開關靈活、密封可靠的特點,也可用于其他低溫和深冷介質的管理系統。加長桿低溫截止閥在低溫工作的材料要保證其低溫性能,主要是保證其冷沖擊強度。低溫閥門閥內件必須通過正確選材,使其具有足夠的冷沖擊強度,才能防止斷裂。C和Cr的合金鋼在低于-20℃時候很快失去抗沖擊強度,所以使用溫度分別限制在-30℃和-50℃。含Ni量為3.5%的鎳鋼可以使用到-100℃,含Ni量9%的鎳鋼可以使用到-196℃。奧氏體不銹鋼、鎳、蒙乃爾合金、哈氏合金、鈦、鋁合金及青銅可以使用到更低的溫度(-273℃) 低溫截止閥引用標準 設計與制造: JB/T7749-95 結構長度: GB/T12221-89 連接法蘭: GB/T9113-2000,HG20592-97,SH3406-96GB/T12224-89 試驗與檢驗: JB/T7749-95 低溫截止閥型號規格 尺寸規格: DN10~500mm 公稱壓力: PN1.6~16.0MPa
低溫截止閥結構特點 1.結構比閘閥簡單,制造與維修都較方便。 2.密封面不易磨損及擦傷,密封性好,啟閉時閥瓣與閥體密封面之間無相對滑動,因而磨損與擦傷均不嚴重,密封性能好,使用壽命長。 3.啟閉時,閥瓣行程小,因而截止閥高度比閘閥小,但結構長度比閘閥長。 4.啟閉力矩大、啟閉較費力,啟閉時間校長。 5.流體阻力大,因閥體內介質通道較曲折,流體阻力大,動力消耗大。 6.介質流動方向 公稱壓力PN≤16MPa時,一般采用順流,介質從閥瓣下方向上流;公稱壓力PN≥20MPa時,一般采用逆流,介質從閥瓣上方向下流.以增加密封件能。使用時,截止閥介質只能單方向流動,不能改變流動方向。 7.全開時閥瓣經常受沖蝕。 2、低溫深冷不銹鋼截止閥優化改進方案結構特點 2.1、技術參數
執行標準 設計與制造 | 結構長度 | 法蘭尺寸 | 壓力-溫度 | 試驗與檢驗 | JB/T7749 | GB 12221 | JB79 | GB9131 | JB/T9092 |
壓力試驗 公稱壓力PN | 1.6 | 2.5 | 4.0 | 強度試驗 | 2.4 | 3.8 | 6.0 | 水密封試驗 | 1.8 | 2.8 | 4.4 | 上密封試驗 | 1.8 | 2.8 | 4.4 | 氣密封試驗 | 0.4-0.7 |
主要性能范圍 型號 | DJ41Y-16 | DJ41Y-16P | DJ41Y-25 | DJ41Y-25P | DJ41Y-40 | DJ41Y-40P | 工作壓力(MPa) | 1.6 | 2.5 | 4.0 | 適用溫度(℃) | -45 | -101 | -196 | 適用介質 | 液化天然氣、液氮、液氨、乙烯、丙烯、甲烷等低溫介質 | 材料 | 閥體、閥蓋 | LCB | LC3 | LCB | LC3 | LCB | LC3 | 閥瓣、閥座 | 鉻鎳鋼+鈷鉻鎢 | 閥桿 | 鉻鎳鋼 |
2.2、低溫深冷不銹鋼截止閥優化改進方案結構 低溫截止閥由閥體、閥瓣、閥桿和汽缸等組成。閥體、閥蓋和閥桿等均采用不銹鋼,閥瓣采用銅。上下兩段閥桿中間用環氧酚醛層壓玻璃鋼布板實現絕熱,法蘭密封面采用鋁墊片,填料使用聚四氟乙烯,汽缸使用雙特密封,以減小摩擦力,閥門整體采用聚氨酯發泡保溫。
3、低溫深冷不銹鋼截止閥優化改進方案設計 3.1、材料選用 航天火箭用低溫推進劑一般有液氫、液氧和氟等,因此要求閥門材料能耐低溫、耐腐蝕與低溫介質相容并具有比較低的導熱性。目前,運用較多的金屬材料有奧氏體鋼、銅或鋁等,非金屬材料有玻璃鋼、聚四氟乙烯等。 從金相考慮,金屬材料中具有面心立方晶格的奧氏體鋼、銅和鋁在低溫狀態下不會出現低溫脆性,但因鋁及鋁合金的硬度不高,鋁密封面的耐磨、耐擦傷性能差,所以在低溫閥門中的使用有一定的限制,僅用于低壓和小口徑閥門中。 低溫閥門用墊片必須在常溫、低溫及溫度變化下具有可靠的密封性和復原性,因此一般選擇性能變化小的墊片材料。如浸漬聚四氟乙烯的石棉填料或成型塑料件填料,而玻璃鋼由于導熱系數很小,大多用作熱橋元件。 3.2、密封結構 在關閉件設計時,閥座采用較硬的材料———不銹鋼,閥瓣采用較軟的材料———銅,當低溫下奧氏體發生相變時,密封面高低不平,軟材料在操作力的作用下產生形變而使其與閥座貼合緊密,補償由于熱應力和組織應力引起的材料變形,解決了高壓低溫工況下的密封性問題。 3.3、絕熱結構 為較好地實現低溫截止閥的絕熱,將閥蓋設計成細長結構,加長熱橋,防止因填料函部分過冷而使處在填料函部位的閥桿以及閥蓋上部的零件結霜,影響使用。采用隔熱墊(材料為環氧酚醛層壓玻璃鋼布)將閥桿分為上、下兩部分,減小熱流,實現絕熱。閥門整體采用外絕熱形式,使用聚氨脂發泡保溫,保層厚200mm。 4、低溫深冷不銹鋼截止閥優化改進方案故障分析 低溫截止閥應用于試驗系統后,出現了無法動作的故障。在對該閥解體后發現,閥桿與閥蓋出現了咬合,閥桿表面的中心線對稱位置處有兩處較深的劃痕,與之相配的閥蓋下法蘭相應位置上也有兩處劃痕。經過分析,引起故障的原因有兩方面。 (1)存儲期 閥門存放期間水平放置并處于開啟狀態,閥桿與閥瓣形成懸臂梁結構,懸臂長147mm,懸臂重418kg。由于重力作用引起下閥桿彎曲,使得下閥桿和閥蓋法蘭孔同軸度偏差增大。原設計中同軸度最大偏差為0.1mm,拆除后實測同軸度偏差約為0.4mm。由于兩零件材料均為OCr18Ni9不銹鋼,低溫下無法進行潤滑,動作時由于同軸度偏差大產生咬合現象。 (2)加工期 經檢查,閥蓋上的銷釘槽沒有按圖紙加工。將圖紙中的方形槽加工成圓弧形槽,影響了銷釘和銷釘槽的正常配合,下閥桿承受側向力,從而導致下閥桿和閥蓋產生干涉。 5、低溫深冷不銹鋼截止閥優化改進方案改進 針對分析中存在的問題,對低溫截止閥結構做了改進。 (1)閥桿與閥蓋配合部分在下閥桿<51mm處壓入一個H62銅套(圖2),不銹鋼OCr18Ni9硬度160HB,黃銅H62硬度56HB,采用這種方式可避免同種材料直接接觸而產生咬合現象。將閥蓋下法蘭孔<51mm加工至<57mm,與下閥桿相應處采用間隙配合(H8/f7),既保證了配合件具有較小的動摩擦力,又起到了導向作用。 (2)閥桿防轉裝置銷釘和銷釘槽配合的作用是避免閥桿旋轉。由于該閥的閥瓣、閥桿、汽缸和活塞等為回轉體,其閥桿是否旋轉對其密封和啟閉性能不會產生影響。為了避免由于銷釘和銷釘槽配合不當而使下閥桿承受側向力,取消了銷釘。 6、低溫深冷不銹鋼截止閥優化改進方案結語 改進后的截止閥在實際使用中動作性能良好。一般情況下,低溫閥門運動副在間隙適當時,可以采用不銹鋼,但是長期使用在有側向力或者軸變形工況時易產生咬合,因此盡量不用。另外,閥門要豎直放置和使用,長期不用時,應使閥門處于關閉狀態。
|